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Abstract
A semiclassical theory for magnetotransport in a quantum Hall system near
filling factor ν = 1/2 based on the composite fermion physical picture is used
to analyse the effect of local flattening of the composite fermion Fermi surface
(CF-FS) upon magnetoacoustic oscillations. We report on calculations of the
velocity shift and attenuation of a surface acoustic wave (SAW) which travels
above the two-dimensional electron system, and we show that local geometry of
the CF-FS could give rise to noticeable changes in the magnitude and phase of
the oscillations. We predict these changes will be revealed in experiments, and
will be used in further studies of the shape and symmetries of the CF-FS. The
main conclusions reported here could be applied to analyse magnetotransport
in quantum Hall systems at higher filling factors ν = 3/2 and 5/2 for a Fermi-
liquid-like state of the system.

1. Introduction and background

A two-dimensional electron gas (2DEG) in a strong magnetic field reveals rich and complex
physics. Near half filling of the lowest Landau level (ν = 1/2) the ground state of such a
system is shown to be a compressible Fermi-liquid-like state of composite fermions (CFs) [1].
These quasiparticles are distributed inside the composite fermion Fermi surface (CF-FS). A
similar physical picture could be adopted to describe the 2DEG at half filling of the next Landau
level (ν = 3/2). Experimental evidence of the CF Fermi sea at ν = 1/2, 3/2 was repeatedly
obtained during the last decade [2].

For higher filling factors close to ν = N + 1/2 where N � 3 is an integer, the exchange
interaction would lead to an instability towards charge density wave formation in the relevant
Landau levels. The ground state of the 2DEG for these filling factors corresponds to a charge
density wave (CDW) and has a striped structure [3–6]. It could be described as a sequence of
one-dimensional stripes alternating between the adjacent filling factors N and N +1. This gives
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rise to strikingly anisotropic transport properties of the 2DEG at half filling of higher Landau
levels [7, 8] which were revealed in experiments [9–11].

The quantum Hall state at ν = 5/2 is perhaps the most enigmatic due to its position in
the magnetic field spectrum between the high Landau level N � 3 stripe phases and the low
Landau level (N � 1) Fermi-liquid-like states. Theoretical studies of this state started from the
model of paired CFs [12]. Depending on the interaction strength within the system, the 2DEG
at ν = 5/2 could reveal a striped state, a Fermi liquid or the paired state [13]. Numerical
simulations presented in [13] give grounds to believe that at ν = 5/2 the CF Fermi liquid
undergoes condensation to the paired state at the low temperature limit. Also, there could be a
transition from the Fermi-liquid to the striped phase when in-plane magnetic field is applied.
Recently, experimental evidence of the CF-FS at ν = 5/2 was obtained [14].

So, both theory and experiment give grounds to believe that the physical picture of CFs
which form a Fermi sea could be successfully employed to describe the 2DEG states at half
filling of the lowest Landau levels (N � 2). However, the geometry of the CF-FS has not
been analysed up to the present. It is usually assumed that the CF Fermi liquid is isotropic,
and the CF-FS is a circle in the two-dimensional quasimomentum space. This is an obvious
oversimplification. Real samples commonly used in studies of the quantum Hall effect have
2DEGs deposited in GaAs/AlGaAs heterostructures. Therefore the crystalline field of the
host semiconductor could significantly influence the CF-FS geometry distorting the original
Fermi circle [15]. Another source of the CF-FS anisotropy, especially for higher filling factors
(ν = 3/2, 5/2), is the interaction in the electron system. The development of highly anisotropic
charge-density wave formations (striped phases) at high filling factors including 5/2 gives us
strong arguments to expect these interactions to work as an extra crystalline field in the Fermi-
liquid state of the 2DEG at ν = 3/2, 5/2. As a result the CF-FS shape could be further modified.

The theory of magnetotransport in metals shows that the FS local geometry noticeably
affects the electron response of the metal to an external perturbation [16]. The change in the
response occurs under the nonlocal regime of propagation of the disturbance when the mean
free path of electrons l is large compared to the wavelength of the disturbance λ. The reason
is that in this nonlocal regime only those electrons whose motion is somehow consistent with
the propagating perturbation can strongly absorb its energy. These ‘efficient’ electrons are
concentrated on small ‘effective’ segments of the FS.

When the FS includes flattened segments it leads to an enhancement of the contribution
from these segments to the electron density of states (DOS) on the FS. Usually this enhanced
contribution is small compared to the main term of the DOS which originates from all the
remaining parts of the FS. Therefore it cannot produce noticeable changes in the response of
the metal under the local regime of propagation of the disturbance (l � λ) when all segments
of the FS contribute to the response functions essentially equally. However, the contribution to
the DOS from the flattened section can be congruent to the contribution of a small ‘effective’
segment of the FS. In other words when the curvature of the FS becomes zero at some points
on an ‘effective’ part of the FS it can give a significant enhancement of efficient electrons and,
in consequence, a noticeable change in the response of the metal to the disturbance.

For the same reasons we can expect local geometrical features of the CF-FS to give
significant effects on the 2DEG response to an external disturbance. As well as for conventional
three-dimensional metals, these effects are to be revealed within a nonlocal regime (l > λ). It
was shown before that the local flattening of the CF-FS could give rise to a strong anisotropy
in the response of a 2DEG to a surface acoustic wave (SAW) [17]. Such an anomaly was
observed in experiments on a modulated 2DEG near ν = 1/2 [18].

Here, we analyse the influence of the CF-FS local geometry on so-called geometric
resonances which were repeatedly observed in 2DEGs in strong magnetic field [2], as well as



Two-dimensional electron systems in strong magnetic fields 7355

in conventional metals [19]. These oscillations could be revealed within a nonlocal regime,
and they appear due to periodical reproduction of the most favourable conditions for the
resonance absorption of the energy of the external disturbance by quasiparticles at stationary
points on the cyclotron orbit where they move along the wavefront of the disturbance. When
the external disturbance is associated with an acoustic wave these geometric resonances are
also called magnetoacoustic oscillations [19]. In the following analysis we mostly consider
magnetoacoustic oscillations in the 2DEG at ν = 1/2 state, and we describe this state within
the framework of Halperin–Lee–Read (HLR) theory [1]. However, we believe that the main
results of the present analysis could be applied to study magnetotransport in 2DEGs at higher
filling factors (3/2, 5/2) provided that the system is in a Fermi-liquid-like state.

2. Main equations

Due to the piezoelectric properties of GaAs, the velocity shift (�s/s) and the attenuation rate
(�) for the SAW propagating along the x axis across the surface of a heterostructure containing
a 2DEG take the form [20]

�s

s
= α2

2
Re

(
1 +

iσxx

σm

)−1

; � = −q
α2

2
Im

(
1 +

iσxx

σm

)−1

. (1)

Here q, ω = sq are the SAW wavevector and frequency, respectively, α is the piezoelectric
coupling constant, σm = εs/2π, ε is an effective dielectric constant of the background and σxx

is the component of the electron conductivity tensor.
According to HLR theory, the electron resistivity tensor ρ at ν = 1/2 is given by

ρ = σ−1 = ρCF + ρCS (2)

where ρCF is the CF resistivity tensor, and the contribution ρCS originates from the Chern–
Simons formulation of the theory. This tensor contains only off-diagonal elements ρCS

xy =
−ρCS

yx = 4π h̄/e2.
The CF resistivity tensor is associated with the CF conductivity σ̃ . As shown in the HLR

paper [1], this tensor has the form

ρCF = σ̃−1 +
iω(m − m0)

Ne2
I (3)

where I is the identity matrix of the second order, N is the electron density, m0 is the CF bare
band mass and m is their effective mass renormalized due to quasiparticle interactions. We
carry out our analysis in a regime where ρxxρyy � ρ2

xy , therefore the relevant component of
the electron conductivity could be written in the form

σxx = e4

(4π h̄)2

{
σ̃xx

σ̃xx σ̃yy + σ̃ 2
xy

+
iω(m − m0)

Ne2

}
. (4)

Here, we concentrate on studies of magnetoacoustic oscillations in the 2DEG response. These
oscillations are solely described by the first term in expression (4). The second term can
noticeably contribute to the value of the electron conductivity but it does not change the
characteristics of magnetoacoustic oscillations. On these grounds we omit the renormalization
correction to the conductivity in further analysis. The CFs are supposed to experience not actual
but reduced magnetic field Beff = B − B1/2 where B1/2 corresponds to one half filling of the
lowest Landau level. Their motion could be described within a semiclassical approximation
based on the Boltzmann transport equation. Following standard methods [21] we obtain

σ̃αβ = 2Nec

Beff

∑
n

vnβ(−q)vnα(q)

in − ω/� + 1/�τ
. (5)
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Here,� is the CF cyclotron frequency at the field Beff; τ is the CF scattering time, and vnα(q)
are the Fourier transforms of the CF velocity components:

vnx(q) = n

2π

�

q

∫ 2π

0
dψ exp

{
inψ − iq

�

∫ ψ

0
vx(ψ

′) dψ ′
}
; (6)

vny(q) = 1

2π

∫ 2π

0
dψ vy(ψ) exp

{
inψ − iq

�

∫ ψ

0
vx(ψ

′) dψ ′
}
. (7)

The variable ψ included in these expressions is the angular coordinate of the CF cyclotron
orbit.

The most favourable conditions for magnetoacoustic oscillations to be revealed occur at
moderately strong effective magnetic field when ql � �τ � 1. Under these conditions
the main contributions to the integrals over ψ in the expressions (6), (7) come from the
neighbourhoods of stationary points at CF cyclotron orbits. As we show below, these
contributions take the form determined with the local geometry of small effective segments of
the CF-FS which correspond to the vicinities of the stationary points. When these segments are
flattened, this leads to significant changes in the magnitude of the magnetoacoustic oscillations.

3. The CF-FS model

Within the commonly used isotropic model of the CF Fermi liquid at ν = 1/2 the CF-FS is a
circle, and its radius pF equals

√
4πNh̄2 where N is the electron density. To develop a more

realistic model of the CF-FS we include a periodic static electric field applied along the y
direction which provides CFs with the potential energy of magnitude Ug (g is the wavevector
of the electric field). The above electric field could originate from interactions with electrons of
lower Landau levels at ν = 3/2, 5/2 and from the crystalline field of the host semiconductor.
The latter is especially important at ν = 1/2. The point is that, wherever it comes from, this
field distorts the CF-FS, including formation of local anomalies of the CF-FS curvature.

Assume for simplicity that the electric modulation is weak (Ug � EF, where EF is the
CF Fermi energy). Then we can use the nearly-free-electron model to derive the energy–
momentum relation for the CFs. When the modulation period is small enough h̄g > 2 pF we
obtain

E(p) = p2
x

2m
+

p∗2
y

2m
+
(h̄g)2

8m
−

√(
h̄gp∗

y

2m

)2

+ U 2
g . (8)

Here p∗
y = py − h̄g/2,m is the CF effective mass; Ug is the magnitude of the quasiparticle

potential energy in the periodic electric field. Calculating the FS curvature,

K = 1

v3

(
2vxvy

∂vx

∂py
− v2

x

∂vy

∂py
− v2

y

∂vx

∂px

)
(9)

with v = ∂E/∂p, v =
√
v2

x + v2
y , one can find it tending to zero when px tends to

±pF(Ug/EF)
1/2 (see figure 1).

In the vicinities of the corresponding points on the FS the quasiparticle velocities are nearly
parallel to the y direction. Near these zero-curvature points we can derive an asymptotic
expression for the energy–momentum relation (8). Introducing (px0 , py0) by px0 = ζ pF,
py0 = pF(1 − 1√

2
ζ 2), where ζ = √

Ug/EF, we can expand the variable py in powers of
(px − px0), and keep the lowest order terms in the expansion. We obtain

py − py0 = −ζ(px − px0)− 2

ζ 4

(px − px0)
3

p2
F

. (10)
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Figure 1. The shape of the CF-FS in the nearly-free-electron approximation (solid line), and
the CF-FS described with equation (14) (dashed line). Points S1 and S2 are associated with the
stationary points in the CF cyclotron orbit when the SAW wavevector q points in the px direction.

Near px0, where (|px − px0 | < ζ 2 pF) the first term on the right side of equation (10) is small
compared to the second one and can be omitted. So we have

E(p) = 4

ζ 4

p2
F

2m

(
px − px0

pF

)3

+
p2

y

2m
. (11)

The ‘nearly-free’-particle model can be used when ζ 2 is very small. For larger Ug the local
flattening of the CF-FS can be more significant. To analyse the contribution to the conductivity
from these flattened parts we generalize the expression for E(p) and define our dispersion as

E(p) = p2
0

2m1

∣∣∣∣ px

p0

∣∣∣∣
γ

+
p2

y

2m2
, (12)

where p0 is a constant with the dimensions of momentum, mi are the effective masses and
γ is a dimensionless parameter which determines the shape of the CF-FS. When γ > 2 the
CF-FS looks like an ellipse flattened near the vertices (0,±√

m2/m1 p0). Near these points
the curvature is

K = − γ (γ − 1)

2 p0
√

m1/m2

∣∣∣∣ px

p0

∣∣∣∣
γ−2

(13)

and K → 0 at px → 0. The CF-FS will be flatter at px = 0 for larger parameter γ .
When 2 pF > h̄g we have to consider the CF-FS as consisting of several branches belonging

to several ‘bands’ or Brillouin zones. The modulating potential wavevector g in this case
determines the size of the ‘unit cell’. However, with this condition we also may expect some
branches of the CF-FS to be flattened. Within an appropriate geometry of an experiment
these flattened segments of the CF-FS become the effective parts of the FS. Consequently, the
response of the CF system to the SAW could undergo significant changes. Prior to starting
the analysis of these changes we remark that our model of the deformed CF-FS (12) could be
easily generalized and accommodated to more complicated geometry of the electric field which
determines the CF-FS shape and symmetries. However, even the simple model (12) captures
the essential physics, enabling us to take local flattenings of the CF-FS into consideration.
Therefore we adopt this model in the further analysis.
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4. Results and discussion

When the SAW propagates along the x direction the vertices S1, S2 of the flattened ellipse (12)
correspond to the stationary points on the CF cyclotron orbits (see figure 1). The enhanced DOS
of quasiparticles in their vicinities influences the features of the magnetoacoustic oscillations.
Using the stationary-phase method we obtain the following asymptotics for the Fourier
transforms of the velocity components:

vnx(q) = n�

q
cos

(
q R − πn

2
− π

2γ

)
X (q R); (14)

vny(q) = −i sin

(
q R − πn

2
− π

2γ

)
V (q R). (15)

Here, 2R is the diameter of the CF cyclotron orbit in the direction of propagation of the SAW;

X (q R) = m∗

p0
V (q R) = 2

π

(
m∗

√
m1m2

)1/γ
�(1/γ )

γ

(
2

q R

)1/γ

≡ a

(
2

q R

)1/γ

(16)

where m∗ is the CF cyclotron mass and �(x) is the gamma function.
Using these results (16), as well as standard formulae [22],

∞∑
n=−∞

1

ω + i/τ − n�
= − iπ

�
coth

π(1 − iωτ)

�τ
; (17)

∞∑
n=−∞

(−1)n

ω + i/τ − n�
= − iπ

�

1

sinh
[
π(1 − iωτ)/�τ

] (18)

we can transform the expressions (5) for the CF conductivity components to the form

σ̃xx = 2

ρ0

(1 − iωτ)

(ql)2
; (19)

σ̃xy = −σyx = − 2

ρ0

g2

(ql)2

(
q R

2

)1−2/γ (1 − iωτ) sin
(
2q R − π/γ

)
sinh

[
π(1 − iωτ)/�τ

] ; (20)

σ̃yy = 2

ρ0

d2

ql

(
q R

2

)1−2/γ {
coth

π(1 − iωτ)

�τ
− cos

(
2q R − π

γ

)
sinh−1 π(1 − iωτ)

�τ

}
(21)

where ρ0 = m∗/Ne2τ is the CF Drude resistivity; l = τ
m∗

√
A
π

and A is the area of the CF-FS.

The factors d2 and g2 included in (20) and (21) are the dimensionless constants of the order
of unity:

g2 = πa2

√
m1

m2
; d2 = (πa)2√

π A

√
m1

m2
p0. (22)

For a circular CF-FS we have γ = 2, p0 = pF, g2 = d2 = 1, and our expressions (20) and
(21) take on the form

σ̃xy = −σ̃yx = 2

ρ0

1 − iωτ

(ql)2
cos(2q R) sinh−1

[
π(1 − iωτ)

�τ

]
; (23)

σ̃yy = 2

ρ0

1

ql

{
coth

[
π(1 − iωτ)

�τ

]
− sin(2q R) sinh−1

[
π(1 − iωτ)

�τ

]}
. (24)

Comparison of our expressions (19)–(21) with the results for a Fermi circle shows that
the local flattening of the CF-FS near the points which correspond to the stationary points
of the CFs cyclotron orbit enhances the magnitude of the magnetoacoustic oscillations of
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the CF conductivities. A similar effect was studied before for conventional metals [23]. The
effect originates from the enhancement of the quasiparticle DOS at flattened segments of the FS.

The above considered enhancement of magnetoacoustic geometric oscillations could be
manifested only when the stationary points on the CF cyclotron orbit correspond to the points
located at flattened segments of the CF-FS. Therefore, the effect has to be very sensitive to
variations in the direction of the SAW propagation. Suppose that the SAW travels at some angle
θ with respect to the symmetry axis of the CF-FS as shown in figure 1. Then the stationary
points slip from the flattened pieces and fall into ‘normal’ segments of the FS whose curvature
takes on nonzero values. Due to the lower DOS of quasiparticles at these ‘normal’ CF-FS
segments, the number of efficient CFs which can participate in the absorption of the SAW
energy decreases when the angle θ increases. This results in the noticeable reduction of the
oscillations.

Assuming a nonzero value for the angle θ , we can present Fourier transforms of the CF
velocity components in the form

vnx(q) = n�

q

[
cos

(
q R − πn

2

)
Sγ (q R, θ) + sin

(
q R − πn

2

)
Wγ (q R, θ)

]
; (25)

vny(q) = − ip0

m∗

[
sin

(
q R − πn

2

)
Sγ (q R, θ)− cos

(
q R − πn

2

)
Wγ (q R, θ)

]
. (26)

Here,

Sγ (q R, θ) = 2

π

(
m∗

√
m1m2

)1/γ ∫ ∞

0
dy cos

[
q R

2

(
m2

m1
sin2 θy2 + cosγ θyγ

)]
; (27)

Wγ (q R, θ) = 2

π

(
m∗

√
m1m2

)1/γ ∫ ∞

0
dy sin

[
q R

2

(
m2

m1
sin2 θy2 + cosγ θyγ

)]
. (28)

Now, we expand these functions Sγ in series in powers of a dimensionless parameter
ξ(ξ = m2

m1
(

q R
2 )

1−2/γ tan2 θ). For small angles θ we have ξ � 1, and the expansion takes
the form [22]

Sγ (q R, θ) = 1

γ cos θ

(
2

q R

)1/γ ∞∑
r=0

(−1)r

r !
ξ r�

(
2r + 1

γ

)
cos

[
π

1 − r(γ − 2)

2γ

]
. (29)

As θ increases to the values guaranteeing the inequality ξ > 1 to be valid, we have to use a
different power expansion, namely

Sγ (q R, θ) = 1

2 sin θ

√
m1

m2

2

q R

∞∑
r=0

(−1)r

r !
ξ−γ r/2�

(
γ r + 1

2

)
cos

[
π

4
(r(γ − 2) + 1)

]
. (30)

Expansions for the function Wγ (q R, θ) could be obtained from (29) and (30) by replacing
cosines by sines of the same angles. When θ → 0 we arrive at our former asymptotic
expressions for the CF velocity components (14) and (15). While θ increases, the functions
Sγ (q R, θ) and Wγ (q R, θ) diminish and approach the value (πm1/4m2q R)1/2 which is a
typical estimate for an elliptical CF-FS as θ → 90◦.

Differences in magnitudes of geometric oscillations of the CF conductivity components
are manifested in the electron conductivity. Substituting our results for σ̃αβ into (4) we have

σxx = qe2

8η2 p0
[q RF2(q R)]−1 sinh[π(1 − iωτ)/�τ ]

cosh[π(1 − iωτ)/�τ ] − cos(2q R − 2�)
. (31)

Here,

η2 = 2

√
A

πp2
0

m2

m1
; tan� = Wγ (q R, θ)

Sγ (q R, θ)
. (32)
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Figure 2. Angular dependence of the amplitude of magnetoacoustic oscillations. The curves are
plotted for q R = 10; m1 = m2; γ = 4 (curve 1); γ = 6 (curve 2); and γ = 8 (curve 3).

When θ = 0, and the locations of the stationary points correspond to flattened segments of the
CF-FS, the expression for σxx takes on the form

σxx = qe2

8d2 p0

(
2

q R

)1−2/γ sinh[π(1 − iωτ)/�τ ]

cosh[π(1 − iωτ)/�τ ] − cos(2q R − π/γ )
. (33)

We compare this expression with the corresponding result for a circular CF-FS

σxx = qe2

8 pF

sinh[π(1 − iωτ)/�τ ]

cosh[π(1 − iωτ)/�τ ] − sin(2q R)
, (34)

and we see that both amplitude and phase of the geometric oscillations in the electron
conductivity differ from those for the CF Fermi circle. The same could be applied to
magnetoacoustic oscillations described with the expressions (1) and (2). The angular
dependence of the amplitude factor of magnetoacoustic oscillations F2

γ (q R, θ) = S2
γ (q R, θ)+

W 2
γ (q R, θ) is presented in figure 2. We see in this figure that the effect of local flattening of

the CF-FS on the oscillation amplitude remains distinguishable even for moderate flattenings
(γ = 4).

The present analysis was carried out assuming isotropic scattering in the system.
Anisotropy in scattering may significantly affect magnetotransport characteristics of the
2DEG [24]. As a result, magnitudes of magnetoacoustic oscillations could be noticeably
reduced compared to those obtained adopting a simple model of isotropic scattering. This
brings difficulties in quantitative comparison of our results with experimental data. However,
it does not change our main conclusion, namely that oscillation magnitudes strongly depend
on the local geometry of the CF-FS. When the effective parts of the CF-FS are flattened,
the amplitude of the magnetoacoustic oscillations drops. We also conclude that varying the
direction of propagation of the SAW we can observe angular dependence of the oscillation
amplitude. The latter originates from the angular dependence of the CF conductivities
discussed before. We have grounds to expect it to be revealed in experiments.

The very essence of the adopted model (12) is that it describes a curve whose curvature
turns zero at px = 0 provided that the curve has symmetries of an ellipse. The expression
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for the curvature (13) shows that any such curve takes the form (12) with γ > 2 near
px = 0. Otherwise, it cannot be flattened at these points. Within this approach we treat
γ as a phenomenological parameter. Actual values of γ could be discovered in experiments
where the FS local geometry is revealed. This is the only trustworthy way to estimate the
above parameter. First principles calculations are not accurate enough to produce reliable
results on such fine geometrical features of the FSs as local flattenings. Up to the present,
only a few relevant experiments have been carried out, so it is impossible to give a proper and
realistic estimation for this parameter γ . Therefore, merely preliminary remarks concerning
possible value of γ are presented here. It was shown that the anomaly in the response of
the modulated 2DEG at ν = 1/2 to the SAW [18] could originate from the distortion of the
CF-FS with the modulating field. The anisotropic response was observed at modulation rates
�N/N ∼ 0.01–0.05. The modulated 2DEG could be treated as some kind of striped structure
artificially created with the applied electric field. The characteristic energy EA associated
with this field induced anisotropy could be roughly estimated as EA ∼ �N

N EF. The sample
used in the experiments of [18] had electron density N ≈ 0.7 × 1011 cm−2 which gives
EA ∼ 10–50 mK. Theoretical analysis of [17] based on the model of the deformed CF-FS
gives a reasonably good approximation for the magnitude of the anomalous peak in the SAW
velocity shift at γ ∼ 3–6. Hartree–Fock calculations of the anisotropy energy in a quantum
Hall striped state at ν = 5/2 evaluated this energy as 30.00 mK per electron assuming electron
density 2.7 × 1011 cm−2 [25]. For the Fermi-liquid-like state of this system EF could be
estimated as 750 mK. We keep in mind that a native anisotropy associated with the Fermi-
liquid-like state at ν = 5/2 is probably much weaker than estimated above. Nevertheless, we
may expect the ratio EA/EF to take on values of the order of 0.05 or even greater. In this
case the parameter γ could accept values of the order of 10, and the effect of the CF-FS local
geometry on the magnetoacoustic oscillations would be quite distinguishable.

A significant anisotropy in a 2DEG response to a SAW is revealed when an external
static electric periodical modulation is applied to the system. The effect was repeatedly
analysed before assuming an isotropic density of the 2DEG states (see e.g. [24] and references
therein). The anisotropy arises due to the break in the symmetry of the system produced by
the modulation, and it depends on the mutual orientation of the modulation equipotential lines
and the SAW wavevector. This effect is distinct from the anisotropy in the 2DEG response
originating from the inherent FS local geometry which is studied in the present work. However,
these different effects could be related, for one can treat an external modulation as a field,
distorting the originally circular FS to a more complicated shape including local flattenings.

Finally, we believe that the Fermi-liquid state of a 2DEG in the quantum Hall regime
at ν = 1/2, 3/2, 5/2 is anisotropic and exhibits an anisotropic CF-FS. The CF-FS geometry
reflects symmetries of the crystalline fields of the host semiconductor. For higher filling factors
ν = 3/2 and 5/2 it also could show effects of interactions in the electron system. It has already
been found that screening due to polarization of remote Landau levels plays an essential role for
the preferred orientation of the stripes induced by an in-plane magnetic field at ν = 5/2 [25].
Therefore, we may conjecture that at weaker in-plane fields when the Fermi-liquid like state
of the 2DEG still exists these polarization effects could give extra anisotropies to the CF-FS.

Anisotropic CF-FSs usually include some flattened segments. Even a naive model (8)
based on the nearly-free-electron approach demonstrates that local flattening of the CF-FS
appears as a result of a weak deformation of the latter with an electric modulation. In general,
local flattenings are initiated with electric fields acting within a 2DEG like crystalline fields in
usual metals. Accordingly, locations of the flattened segments conform with the symmetries
of the CF-FS and could reveal these symmetries. The results of the present analysis show
that magnetoacoustic oscillations in the velocity shift and attenuation of the SAW travelling
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in piezoelectric GaAs/AlGaAs heterostructures above the 2DEG could be used as a tool to
discover local flattenings at the CF-FS when the 2DEG is in the quantum Hall regime in the
Fermi-liquid-like state. This could give a new knowledge of the shape and symmetries of
the CF-FS and, consequently, a better understanding of the magnetotransport in quantum Hall
systems near half filling of the lowest Landau levels. It would be especially interesting to
compare symmetries of the CF-FS in the Fermi-liquid-like state of the 2DEG at ν = 5/2 with
the characteristic symmetries of the striped state of the system at the same filling factor. It is
possible that such a comparison would give some unusual results, providing a new insight into
the nature of the transition from the Fermi-liquid to the striped phase of the 2D electron system.
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